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Studying Clouds



The difficulty In studying clouds

Aerosols <0.1 micron, cloud systems >1000 km.
Cloud particles grow in seconds: climate is centuries.

Cloud growth can be explosive (e.g. thunderstorms)
and carry a lot of energy.

Cloud properties can vary by a factor of 1000 in hours.
Few percent change in cloud cover can drive climate
sensitivity

Current climate models have resolutions of more than
100 km

Cloud updrafts are a 100 m to a few km.



Clouds are important for understanding the global energy balance
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Studying Clouds

clouds are a strong modulator of shortwave and longwave; their

effect on global radiative processes is large
(1% change in global cloud cover equivalent to about 4% change in CO2 concentration)

accurate determination of global cloud cover has been elusive
(semi transparent clouds often underestimated by 10%)

global climate change models need accurate estimation of cloud

cover, height, emissivity, thermodynamic state, particle size

(high/low clouds give positive/negative feedback to greenhouse effect, and
higher albedo from anthropogenic aerosols may be negative feedback)

there is a need for consistent long term observation records to

enable better characterization of weather and climate variability
(ISSCP is a good start)



A global cloud climatology using imagers on
geo & leo op weather satellites (GOES-E & -W,

Meteosats, GMS, and am and pm AVHRRYS).
5 countries collect and feed data to NASA/GISS.
VIS & IRW radiances are used.
Data are calibrated wrt NOAA-9.
Global cloud analysis is produced every 3 hours

for tracking diurnal periods to decadal changes.
Data record of 1983 to 2006 is being expanded.
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The CTP Problem



Cirrus detection has been elusive in the visible bands

ey
vy

€\ GOES WEST
!/ REMAPPED TO ERST _#

f

Depending on view angle cirrus Is seen in visible image



IR window sees cirrus but places cloud height too low

_innn“ 1DUﬁ

000F T 1000 1000 s ) s 11000 1000

10005 1000 e 000
jilta [ . A

1000

'iDUU : 1000 1000 1000 1hnn

 1__|:|'|:1|]. o #1000 10000 1000

1000
1000

" 000




Need correction for cloud semi-transparency

Radiance from a
partly cloudy FOV

clear air, a cloudy, c
R=[1- Ne]R¢jear air * N& Ropg cig (Pe)

Two unknowns, Neg and P¢,
require two measurements



The CO2 Slicing Solution



Cloud Top Properties Algorithm Overview

Cloud-top properties (temperature, pressure, and effective emissivity) are
derived using the IR window and longwave CO, absorption bands (both
day and night). Pressure is derived from ratios of differences in radiances
between cloudy and clear-sky regions at two spectrally close channels.
Adjustments are made for radiance biases so that clear (calculated) and
cloudy (observed) radiances are both referenced to the NCEP/EMC
Global Forecast System forward calculated radiances. Effective cloud
amount (cloud fraction times cloud emissivity at 11 um) is derived using
the inferred cloud top pressure and the radiative transfer equation for the
11 wm band. For low clouds (> 700 hPa), the CO, channel SNR
decreases, so the IR window 11 um brightness temperature is assumed
to be the opaque cloud-top temperature and a cloud-top pressure is
assigned using the NCEP/EMC GFS temperature profile. Cloud phase is
primarily determined from the beta ratio of the 8.5 and 11 um clear minus
cloudy radiances with some IR adjustments for high versus low and thin
versus thick clouds.
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RTE in Cloudy Conditions

l, = nI9+(1-n)I where cd = cloud, clr = clear, n = cloud fraction
) A

0]
= B(T) %(p) + | B,(T(P) d,.
Ps

Pe
|;d (1-g,) By (T) to(ps) + (1-5)) J B,(T(p)) dr,
Ps

0
+ & B,(T(po) u(po) + | By(T(R)) dy
P
g, IS emittance of cloud. First two terms are from below cIon, third term is cloud
contribution, and fourth term is from above cloud. After rearranging
pc dB}»
-1 =me [ t(p) ___ dp.
Ps dp



Cloud Properties from CQO2 Slicing

RTE for cloudy conditions indicates dependence of cloud forcing
(observed minus clear sky radiance) on cloud amount (n¢,) and
cloud top pressure (p,)

Pe
(-1, =ng, [ 1,dB, .
Ps

Higher colder cloud or greater cloud amount produces greater cloud
forcing; dense low cloud can be confused for high thin cloud. Two
unknowns require two equations.

p. can be inferred from radiance measurements in two spectral bands
where cloud emissivity is the same. ng, is derived from the infrared
window, once p, Is known.



CO2 channels see to different levels in the atmosphere

14.2 um 13.9 um 13.6 um 13.3 um



BTs in and out of clouds for MODIS
CO, bands

demonstrate weighting functions and
cloud top algorithm
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Different ratios reveal CTPs using CO2 Slicing

cloud properties L S e
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Different ratios reveal

cloud properties
at different levels

hi - 14.2/13.9
mid - 13.9/13.6
low - 13.6/13.3
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then IRW is used

CTPs using CO2 Slicing

For spectrally close bands cloud emissivities
are the same, &€,,=€,,

Clear sky radiances I, are calculated
from GDAS (Global Data
Assimilation System)

Corrections up to several tenths of a radiance
unit (W/m2/ster/um) for observed minus
calculated radiance differences are applied
for eight day composites of clear sky
observations (in 1 degree latitude bins
accumulated separately for
ocean-day&night, land-day, and land-night)
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January 2001: MODIS High Clouds [0—400 mb)
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Resolving some early iIssues
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MODIS C5 and CALIOP Cloud Properties Comparison
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Normalized Number of Occurrence

Collect 5 Single Level CO2 Sllcmg CTHs
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Mormalized Number of Occurrence

Collect 5 Impact of Multilevel Clouds
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Summary of Changes for Collect 6 (MODO6CT & MYDO6CT)

« Lower "noise" thresholds (clear minus cloudy radiances required to
Indicate cloud presence in CO, bands) enabling more CO, slicing solutions
for high thin clouds.

 Implement CO, spectral band shifts suggested by Tobin et al. (JGR
2006) for Terra and Aqua MODIS.

« Adjust ozone profile between 10 and 100 hPa to GDAS values instead of
using climatology (so that CO, radiances influenced by O, profiles are
calculated correctly).

 Incorporate sinusoidal CO2 increase.

« Prohibit CO, slicing solutions for water clouds; use only IRW solution.
Avoid IRW solutions for ice clouds; use CO, slicing whenever possible.

 Restrict CO, solution to the appropriate part of troposphere
(determined by CO, band weighting functions so 36/35 < 450 hPa, 35/34 <
550 hPa, and 34/33 < 650 hPa).

« Implement marine stratus improvement where a constant lapse rate is
assumed in low level inversions according to latitude region.

« Add Upper Troposphere / Lower Stratosphere Flag

« Use Beta-ratios to determine cloud phase.



Evaluation of MODIS Spectral Response Functions Using AIRS
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A sample ATRS brightness temperature spectrum (black line) collected on 1B February 2004 at ~0630 UTC of f the east
coast of Flerida with the detector averaged Agua MODLS spectral response functions (SRFs) overlaid. The MODILS
spectral band numbers are noted alang the fop of the panel, with central wavelengths as follows: 31 (11 um), 32 (12 um), 33
(13.3 um), 34 (13.6 wm), 35 (13.9 um), and 36 (14.2 um).

Tabin, D. C., H. E. Revercomb, €. €. Moeller, ond T. 5. Pogano, 2006: Use of Atmospheric Infrored Sounder
high-spectral resolution spectra to assess the calibration of Moderate resolution Imaging
Spectroradiometer an EOS Agqua. J. Geophys. Res., 111, BO9505, doi:10.102%/2005 0006055,



AIRS minus MODIS Comparison: 13.9 microns

Exploring
MODIS
SRF
Shifts

AIRS-MODIS (K}

unshifted | unshifted
shifted shifted

AIRS-MODIS (K)

AIRS-MODIS (K)

MODIS Bond 35 (13.9 um) brightness temperature differences using the nominal detector
averaged MODIS SRF and using the SRF shifted by +0.B cm' {1565 nm) for ane orbit on &
September 2002. The panels are images of the brightness temperature differences without
{feft) and with (right) the shif+t.
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MODIS bands 33-36 (in 5-zone moving averages) are created from 8-day 25-km biases for

daytime land, nighttime land, and ocean data. Day and night land data are combined south of
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60°S due to poor clear-sky sampling and the difficulty of discriminating between clear and
oudy conditions in this region. Figures show C5 versus C6 band 34-36 biases from 26 August
2006 over ocean. Land values (not shown) are used for ocean ice cases in polar regions.



O3 affects CO2 bands

perturbed minus original profile
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Adjust ozone profile between 10 and 100 hPa to GDAS values instead of using
climatology (so that CO, radiances influenced by O, profiles are calculated correctly).
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Avoid IRW solutions for ice clouds
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Avoid CO2 slicing solutions for water clouds
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Altitude

Marine Stratus Correction for Low Level Inversion
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Zonal Mean Cloud Top Altitude (km)
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Ocean Zonal Mean Low Cloud Top Altitude from CALIOP and MODIS
Collocated Data from August 2006
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The apparent lapse rates are based on 11-micron differences between clear-sky and measured
cloud radiances. Regression coefficients are based on latitude, using curve fitting for three
different segments as shown above. Coefficients are provided for each month.




Frequency (%)

C6 Produces More High CO, Slicing and Low IRW Solutions

caused by spectral shift and cloud phase discriminator

MODIS Frequency of Band 36/35 CTP Retrievals
August 28, 2006

100 F
0t
—— TerraCh
—— Terra Cov1.5
80} 5
70t

90 -7

Collect 5 versus 6 latitudinal distribution of high cloud CO, slicing solutions (from 36/35) and low
water cloud IRW solutions for Terra MODIS on 28 August 2006 (in % of all cloudy observations)

-60

-45

-30

-15

0
Latitude

15

30

45

60

75

90

Frequency (%)

MODIS Frequency of IR Window CTP Retrievals
August 28, 2006

100

90t \

80t

—_—

70t

60}

50

40t

30t

20t
—— Terra CH

~— Terra Cov1.5
10¢

Ot

90 -5 60 45 =30 -15 0 15 30 45 60 7
Latitude

90



Example of High Clouds in the Equatorial Pacific
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CO2 at 13.9 um
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Cyan 260-300; Sky 300-330; Blue 330-360; Navy 360-390; Light Orange 390-440
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Cyan 260-300; Sky 300-330; Blue 330-360; Navy 360-390; Light Orange 390-440
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Red 0.3-0.5; Magenta 0.2-0.3; Orange 0.1-0.2, Yellow 0.0-0.1; Navy Clear
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Comparisons with CALIOP Confirm C6 Improvements
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Normalized Number of Occurrence
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B
CALIOP Estimates MODIS Thin Cloud Sensitivity

By matching the Aqua MODIS high cloud amount values to CALIPSO’s curve of high cloud
amount versus cloud emissivity, we can determine the sensitivity of MODIS to cloud emissivity.
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CALIP=C emissivity thresheold

For the Tropics in August 2006, the MODIS high cloud amounts are about 0.32. This gives a
cloud emissivity limit of about 0.3.
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Global Distribution of C5 minus C6 CTP Differences

CTPs from Aqua C5 and C6 for August and November 2012 have been compared using the Space-
Time-Grid software (Smith et al. JAMC 2013). More transmissive cirrus are being reported as high
cloud both day and night. C6 high cloud CTPs in mid-latitude oceans have decreased by ~50 hPa.
C6 low marine stratus CTPs have increased by ~150 hPa. C5 to C6 adjustments vary seasonally.

hPa hPa
MODISc5 minus MODISc6 high CTP difference;August 2012 - Night time [hPa] MODISc5 minus MODISc6 low CTP difference;August 2012 - Night time [hPa]
_ T 200 _ = = 200
80,2 % =5 ) : ) o e i W 2%
vk Ik . : 150 - ARV / AT 150
40 : = 40 = g
AN AN | |
20 L _— ¥
NESSAS
0 ] ! |.“".I ..‘ I .".\’ o
i T 1 S .
Rues e m
PN A B
R
_60 L -~

150 20

10 0

L A

1-100

N
PR

]

hPa
MODISc5 minus MODIScE high CTP difference;November 2012 - Daytime InPe] MODIScS minus MODISc6 low CTP difference;November 2012 - Daytime

; 200 ; — 200
502 , 2 : e =, N s

' ' . ' 150 Yy i : ' 150

40 § 40 ; : -
. ; o0 ' j A 100

20 ] f %\:RA R 20 J,I s %\\ Py '

Bl ’ k‘ N s \{, L {50 : r K_‘ A \{, 50
| b N T L \
. : b4 : 1 )

-




Percent of Total CTF Retrievals

With C6, Vertical Distribution of Terra and Agua

Clouds Comes Into Agreement

Vertical distribution of clouds in latitude bands (90S-20S, 20°S-20°N, and 20°N-90°N) for
28 August 2006 show closer agreement for Terra and Aqua with C6 algorithm changes.
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Terra C5 (left) & C6 (middle) along with Aqua C6 (right) results for 90°S-20°S



Summary of Changes for Collect 6 (MODO6CT & MYDO6CT)

Lower "noise" thresholds (clear minus cloudy radiances required to
indicate cloud presence in CO, bands) enabling more CO, slicing
solutions for high thin clouds.

Implement CO, spectral band shifts suggested by Tobin et al. (JGR
2006) for Terra and Aqua MODIS.

Adjust ozone profile between 10 and 100 hPa to GDAS values
instead of using climatology (so that CO, radiances influenced by O,
profiles are calculated correctly).

Incorporate sinusoidal CO2 increase.

Prohibit CO, slicing solutions for water clouds; use only IRW
solution. Avoid IRW solutions for ice clouds; use CO, slicing
whenever possible.

Restrict CO, solution to the appropriate part of troposphere
(determined by CO, band weighting functions so 36/35 < 450 hPa,
35/34 <550 hPa, and 34/33 < 650 hPa).

Implement marine stratus improvement where a constant lapse rate
IS assumed in low level inversions according to latitude region.

Add Upper Troposphere / Lower Stratosphere Flag. €

Use Beta-ratios to determine cloud phase.



UT/LS Cloud Flag
Indicated when BT13.9>BT13.3

XXX XXX Co, BT13.9

X X X X X above cloud <
BT13.3

-l Cloud <

Can also use
WYV above cloud when
BTWV>BTIRW
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Presenter
Presentation Notes
Histogram of collocations between CALIOP Version 3 5-km and MODIS Collection 6 1-km products for August, 2006. MODIS brightness temperature differences BTD[13.9-13.3 µm] are shown as a function of the difference between the CALIOP cloud-top height (CTH) and the tropopause height. The tropopause height is determined from the temperature profiles in the GDAS model at the closest time and location to the MODIS data. The collocated data are from 60˚S-60˚N for both daytime/nighttime conditions over all surfaces, but are filtered for single-layered, overcast clouds (CALIOP QC flag ≥ 18). The colors are in log10 scale. 

95.9% of the collocated CALIOP cloud heights (and 88.6% of the MODIS cloud heights) were within 2 km of the tropopause
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Presenter
Presentation Notes
Detection of clouds in the upper troposphere/lower stratosphere (UT/LS) for a MODIS granule at 0800UTC on 28 August, 2006, over the Indian Ocean. (a) Brightness temperatures (K) for MODIS band 36 (14.2 m), (b) 1-km pixels identified with the UT/LS cloud test are painted in red.


IR Phase Modifications
Bryan A. Baum, Richard Frey, and Andrew Heidinger

Collection b:
- Based on 8.5/11-ym BTs and their differences
- Provided at 5-km resolution

Collection 6:
Supplement BT/BTD tests with emissivity ratios () ratio)

§) ratios are based on 7.3, 8.5, 11, 12-ym bands
Use of ] ratio mitigates influence of the surface
Approach imposes new requirements:

- clear-sky radiances, which implies knowledge of ...

- atmospheric profiles, surface emissivity, and a fast RT model

This approach can be implemented for only the 1-km products



The Beta ratio is based on cloud emissivity profiles

A cloud emissivity profile for a single band:

[Iac(p) + %:ac(p)]:bb(p) - Iclr')]

where

I, = clear-sky radiance

I..(p) = above cloud emission at pressure p

I,,(p) = TOA radiance for opaque cloud at pressure p
#,.(p)= above cloud ftransmission

Slxy(p) = In[1-M. (p)]
In[l'm.c,x(p)]

where x and y are two channels used to compute the ratio



Beta ratios used for C6 IR phase tests

8.5/11: has the most sensitivity to cloud phase

11/12: sensitive to cloud opacity; implementation of this
pair helps with optically thin clouds (improves phase
discrimination for thin cirrus)

7.3/11: sensitive to high versus low clouds; helps with
low clouds (one of the issues was a tendency for low-
level water clouds to be ringed with ice clouds as the
cloud thinned out near the edges)



MODIS IR Phase for a granule on 28 August, 2006 at 1630 UTC
Over N. Atlantic Ocean between Newfoundland and Greenland

False color image
Red: 0.65 Om; Green: 2.1 Om; Blue: 11 Om

Water Unknown

Thin cirrus: blue

Opaque ice clouds: pink Collection 5 algorithm but with
Water clouds: white/yellow . . .
Snow/ice: magenta (Southern tip of Greenland) uncer'.‘ram and rplxed ph.GSC p'xels
Ocean: dark blue combined into “uncertain” category

Land: green



MODIS IR Phase for a granule on 28 August, 2006 at 1630 UTC
Over N. Atlantic Ocean between Newfoundland and Greenland

False color image
Red: 0.65 Om; Green: 2.1 Om; Blue: 11 Om

Clear Water Unknown

Collection 6 algorithm:

Propose 3 categories, deleting mixed
phase since there is no justification
for this category



a) Collection 5

b) Collection 6

Unknown

For C5, most of the
uncertain phase pixels
occurred in the storm
tracks, i.e., at high latitudes

For C6, there are many less
uncertain phase retrievals
now that cirrus is more
likely to be identified as ice
phase clouds



Conclusions on CO2 Slicing CTH Algorithm Adjustments

The largest cloud height errors (>15 km) result from not using
CO2 slicing

Spectral shifts reduce the bias in observed minus calculated
radiances

Reducing the cloud detection threshold increases thin cloud
sensitivity and produces more CO2 slicing solutions so that CTPs
are decreased for high clouds

A high bias in marine stratus CTHs is mitigated by assuming a
latitudinally dependent wet lapse rate

Using B-ratio cloud phase algorithm produces fewer uncertain
retrievals and cirrus is more likely to be identified as ice

Vertical distributions of Terra and Aqua CTPs show better
agreement

Making multiple passes through large data sets was necessary
Using CALIOP as a reference was invaluable



Example MODIS Collection 6 Results
monthly statistics of cloud top pressure
March 2012 to February 2013

High vs. Low
Day vs. Night

Filtering and aggregation based on STG method
described in Smith et al. (2013) JAMC

Richard Frey, Bryan Baum, Nadia Smith,

Nick Bearson, and Paul Menzel
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Low Clouds Study
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Ten Year Trends



Aqua MODIS High Cloud Frequency (%)

Aqua MODIS High Cloud Frequencies
Clouds < 440 hPa and Upper Tropospheric/Lower Stratospheric Clouds
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Contents of Output File



The Output File Contains

Time, Lat, Lon, SZA

BTs of bands 29, 31-36

Cloud height method (CO, slicing or IR window)

CTP, CTT, N, CEE (solutions selected by algorithm)
CTP (using IRW)

CTPs (from ratios 33/31, 34/33, 35/33, 35/34, 36/35)
Sfc Type

Cloud phase infrared

UTLS Flag
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